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Typical Set

An
ε ={(x1, x2, ..., xn) : 2−n(H(X)+ε)

≤ P(x1, x2, ..., xn) ≤ 2−n(H(X)−ε)}

For large n, typical set is
most probable, and the
probability of each sequence
in the typical set, An

ε , have
almost the same value
2−nH(X).
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Information Measures

All the information measures are defined on the typical set!

Info Measures

hµ = H[X0|X:0]

E = I[X:0;X0:] = I[S−;S+]

rµ = H[X0|X:0,X1:]

bµ = I[X0;X1:|X:0]

But what about the non typical part?
There are really rare.
Events and their probabilities lying outside typical set are fluctuations or,
sometimes, deviations.
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Non Typical Sets ∼ Rare events

Goal: we want to have information measures for all of the parts of the whole
sets.

What is the meaning of that?

For example we know number of words in typical set grows as exp(hµL) and
their probabilities decay as exp(−hµL).

we can ask a same question for other parts of the whole set.
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Idea: β mapping

How to calculate information
measures for a subset ofA∞
(e.g., Aβ)?
If we could find a mapping
that map our process T to
new process Sβ in a way that
it’s typical set be Aβ then we
could calculate all the infor-
mation measures for Sβ and
that gives us the answer.
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Partitioning the whole set.

How?

because we map A∞ to Aβ and all the members of A∞ have the same
decay rate for probability then all the members of the Aβ should have the
same decay rate too.

so?

We put all the words with same decay rate of probability in a same partition
and label that partition with β
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Fluctuation spectroscopy

To each word w ∈ A` one associates an energy density:

U`
w :=

− log2 Pr(w)

`
,

mirroring the Boltzmann weight common in statistical physics:
Pr(w) ∝ e−U(w).
Naturally, different words w and v may lead to same energy density,
U`

w = U`
v . And so, in the set U` =

{
U`

w : w ∈ A`
}

, energy values may appear
repeatedly. Let’s denote the frequency of equal U`

w s by N(U`
w ). Then, for the

thermodynamic macrostate at energy U, we define the thermodynamic
entropy density:

S(U) := lim
`→∞

log2 N(U`
w = U)

`
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The Map

The Map(
T (x)
β

)
ij = eβ ln Pr(x|σi ) =

(
Pr(x |σi)

)β
Tβ =

∑
x∈A T (x)

β

lβTβ = λβ lβ ,Tβrβ = λβrβ
lβ · rβ = 1

We drove the correct mapping!
Mβ : T→ Sβ given by:

(Sβ)ij =
(Tβ)ij (̂rβ)j

λ̂β (̂rβ)i
,

(
S(x)
β

)
ij =

(
T(x)
β

)
ij (̂rβ)j

λ̂β (̂rβ)i
.
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Biased Coin
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Nemo ∼ persistent symmetry
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RRIP ∼ hidden symmetry
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Large deviation
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Large deviation rate (How
each partition decay?):
I(U) := limL→∞

[
− log2 Pr(UL)

L

]
It could be shown that
I(U) = U − S(U)
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Thermodynamic Classes in Process Space
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Infinite-State Processes
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Non Ergodicity
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